ym88659208ym87991671
Работа с функциями | Документация для разработчиков

Работа с функциями

Обновлено 5 декабря 2024

Функции — внешние инструменты (фрагменты кода), к которым могут обращаться модели GigaChat для решения задач пользователей. Модель не исполняет функции, но самостоятельно принимает решение о том как, когда и с какими параметрами их следует вызвать. При принятии решения о вызове функции модель исходит из доступных знаний, данных текущего разговора и описания функции. После обращения к функции модель может обработать результат ее работы.

Несколько примеров функций:

  • запрос на поиск информации в базе данных;
  • поиск в интернете по запросу и параметрам;
  • изменение статуса устройств умного дома;
  • вычисление математической формулы;
  • создание изображения по текстовому запросу с помощью сторонней нейронной сети.

Функции значительно повышают возможности языковых моделей, давая им возможности:

  • получать и обрабатывать информацию из внешних источников;
  • взаимодействовать с окружающей средой;
  • обрабатывать результаты этого взаимодействия.

Функции - ключевой элемент для построения сложных решений с применением LLM, таких, как AI-агенты и ассистенты.

Все модели GigaChat для генерации поддерживают два вида функций:

  • пользовательские — функции, которые вы реализуете и исполняете самостоятельно. Модель автоматически определяет необходимость вызова функции на основе ее описания. Для таких функций модель может сгенерировать объект с данными в подходящем вам формате, после чего вы сможете использовать их для дальнейших преобразований;
  • встроенные — функции, которые модель использует для выполнения различных задач, например, генерации изображений. Функции исполняются внутри сервиса.

Для работы с функциями используется запрос POST /chat/completions. А именно — необязательное поле function_call, которое задает режим работы с функциями и может принимать значения:

  • "none" — режим работы по умолчанию.

    Если запрос не содержит поля function_call или значение поля — none, модель не будет вызывать функции (в том числе встроенные), а просто сгенерирует ответ в соответствии с полученными сообщениями.

  • "auto" — в зависимости от содержимого запроса, модель решает что нужно сделать: вызывать встроенные функции, сгенерировать аргументы для исполнения пользовательской функции или просто сгенерировать сообщение.

    Модель вызывает встроенные функции, только если отсутствует массив functions с описанием пользовательских функций.

    Если запрос содержит "function_call": "auto" и массив functions с описанием пользовательских функций, модель будет генерировать аргументы для описанных функций и не сможет вызвать встроенные функции независимо от содержимого запроса.

Ниже, на примере функции прогноза погоды, показано как работать с пользовательскими функциями с помощью GigaChat.

Работа с пользовательскими функциями

Функция, использованная для примера, возвращает данные о температуре в зависимости от аргументов, полученных на входе:

  • места, для которого запрашивается погода;
  • единиц измерения температуры;
  • периода в днях, которому должны соответствовать данные о температуре.

Описание функции

Чтобы модель могла определить, что нужно исполнить пользовательскую функцию, а также могла сгенерировать для нее аргументы, подготовьте ее описание в формате JSON Schema.

{
"name": "weather_forecast",
"description": "Возвращает температуру на заданный период",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "Местоположение, например, название города"
},
"format": {
"type": "string",
"enum": [
"celsius",
"fahrenheit"
],
"description": "Единицы измерения температуры"
},
"num_days": {
"type": "integer",
"description": "Период, для которого нужно вернуть"
}
},
"required": [
"location",
"num_days"
]
}
}

Для улучшения генерации аргументов в описании функции вы также можете передать:

  • few_shot_examples — массив с примерами запросов пользователя и ответов модели;
  • return_parameters — объект с описанием данных в формате JSON Schema, которые возвращает функция.

Модели GigaChat значительно лучше работают с функциями, которые описаны согласно приведенным примерам. При описании функции уделяйте внимание подробному описанию структуры входных и выходных данных, не забывайте указывать краткое описание самой функции и примеры ее использования.

Ниже вы найдете несколько примеров хорошо описанных функций.

{
"name": "weather_forecast",
"description": "Возвращает температуру на заданный период",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "Местоположение, например, название города"
},
"format": {
"type": "string",
"enum": [
"celsius",
"fahrenheit"
],
"description": "Единицы измерения температуры"
},
"num_days": {
"type": "integer",
"description": "Период, для которого нужно вернуть"
}
},
"required": [
"location",
"num_days"
]
},
"few_shot_examples": [
{
"request": "Какая погода в Москве в ближайшие три дня",
"params": {
"location": "Moscow, Russia",
"format": "celsius",
"num_days": "3"
}
}
],
"return_parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "Местоположение, например, название города"
},
"temperature": {
"type": "integer",
"description": "Температура для заданного местоположения"
},
"forecast": {
"type": "array",
"items": {
"type": "string"
},
"description": "Описание погодных условий"
},
"error": {
"type": "string",
"description": "Возвращается при возникновении ошибки. Содержит описание ошибки"
}
}
}
}

Примеры описания функций

Представленные примеры описания функций используются в Jupyter-блокноте, который демонстрирует работу с функциями с помощью GigaChain.

Функция расчета расстояния
{
"name": "calculate_trip_distance",
"description": "Рассчитать расстояние между двумя местоположениями",
"parameters": {
"type": "object",
"properties": {
"start_location": {
"type": "string",
"description": "Начальное местоположение"
},
"end_location": {
"type": "string",
"description": "Конечное местоположение"
}
},
"required": [
"start_location",
"end_location"
]
},
"return_parameters": {
"type": "object",
"properties": {
"distance": {
"description": "Расстояние между начальным и конечным местоположением в километрах",
"type": "integer"
}
},
"required": [
"distance"
]
},
"few_shot_examples": [
{
"request": "Насколько далеко от Москвы до Санкт-Петербурга?",
"params": {
"start_location": "Москва",
"end_location": "Санкт-Петербург"
}
}
]
}
Функция отправки SMS-сообщения
{
"name": "send_sms",
"description": "Отправить SMS-сообщение",
"parameters": {
"type": "object",
"properties": {
"recipient": {
"type": "string",
"description": "Номер телефона получателя"
},
"message": {
"type": "string",
"description": "Содержимое сообщения"
}
},
"required": [
"recipient",
"message"
]
},
"return_parameters": {
"type": "object",
"properties": {
"status": {
"description": "Статус отправки сообщения",
"type": "string"
},
"message": {
"description": "Сообщение о результате отправки SMS",
"type": "string"
}
},
"required": [
"status",
"message"
]
},
"few_shot_examples": [
{
"request": "Можешь ли ты отправить SMS-сообщение на номер 123456789 с содержимым 'Привет, как дела?'",
"params": {
"recipient": "123456789",
"message": "Привет, как дела?"
}
}
]
}
Функция поиска фильмов
{
"name": "search_movies",
"description": "Поиск фильмов на основе заданных критериев",
"parameters": {
"type": "object",
"properties": {
"genre": {
"type": "string",
"description": "Жанр фильма"
},
"year": {
"type": "integer",
"description": "Год выпуска фильма"
},
"actor": {
"type": "string",
"description": "Имя актера, снимавшегося в фильме"
}
},
"required": []
},
"return_parameters": {
"type": "object",
"properties": {
"movies": {
"description": "Список названий фильмов, соответствующих заданным критериям поиска",
"type": "array",
"items": {
"description": "Название фильма",
"type": "string"
}
}
},
"required": [
"movies"
]
},
"few_shot_examples": [
{
"request": "\"Найди все фильмы жанра комедия\".",
"params": {
"genre": "комедия"
}
}
]
}

Примеры составных функций

Модели GigaChat могут использовать результаты работы одних функций для вызова других. О такой возможности нужно сообщать в описании соответствующих функций. В остальном они описываются так же, как и обычные функции. Функции, которые работают таким образом, называются составными.

Ниже — пример нескольких функций, в описании которых заданы инструкции для модели. Согласно этим инструкциям при недостатке данных модель должна самостоятельно вызвать соответствующую функцию, которая может дать недостающие данные.

Функция получения данных о напоминании
{
"name": "get_reminder",
"description": "Получить метаинформацию обо всех установленных напоминаниях. Вызови эту функцию перед удалением или изменением напоминаний, чтобы получить id напоминаний. В случае если пользователь хочет удалить или изменить напоминание и в контексте диалога нет необходимых id, то сначала вызови эту функцию для получения идентификатора id и ответь пустым сообщением, а далее при необходимости вызови следующую функцию для выполнения запроса пользователя.\nПосле вызова данной функции ответь пользователю в следующем стиле: \"У вас установлено 2 напоминания. Через 10 минут выключить духовку на кухне, а завтра в 3 часа сходить в гости.\"",
"parameters": {
"type": "object",
"properties": {
"title": {
"type": "string",
"description": "Текст напоминания"
},
"date_time": {
"type": "string",
"description": "Относительное время и дата напоминания на русском языке"
},
"device_name": {
"type": "string",
"description": "Название устройства, на котором следует проверить напоминание"
},
"room": {
"type": "string",
"description": "Название комнаты в которой следует проверить напоминание"
}
},
"required": []
},
"few_shot_examples": [
{
"request": "мои напоминания",
"params": {}
},
{
"request": "удали напоминалку на завтра в пять",
"params": {}
},
{
"request": "перенеси напоминание поздравить маму на шесть вечера",
"params": {}
},
{
"request": "какое у меня количество напоминаний",
"params": {}
},
{
"request": "озвучь напоминалки",
"params": {}
}
],
"return_parameters": {
"type": "object",
"description": "Ответ на get_reminder",
"properties": {
"status": {
"type": "string",
"enum": [
"success",
"fail"
],
"description": "Статус - удалось ли найти список установленных напоминаний"
},
"error": {
"type": "string",
"description": "Текст ошибки в случае, если status == fail"
},
"items": {
"type": "array",
"description": "Список установленных напоминаний. В списке перечислены идентификаторы напоминаний (id), дата и время старта напоминания (reminderTime), периодичность напоминания в человекочитаемом формате (cron), название напоминания (title), дата и время создания напоминания (createdAt).",
"items": {
"type": "object",
"description": "Метаинформация напоминания.",
"properties": {
"id": {
"type": "string",
"description": "Идентификатор напоминания."
},
"cron": {
"type": "string",
"description": "Описание периодичности напоминания. Здесь будет передано человекочитаемое описание переодичности напоминания. Если поле отсутствует, то у напоминания нет периодичности (единоразовое)."
},
"title": {
"type": "string",
"description": "Название напоминания, о чем надо напомнить."
},
"devices": {
"type": "array",
"description": "Словарь устройств, к которым привязаны напоминания",
"items": {
"type": "string",
"description": "Название устройства"
}
},
"reminderTime": {
"type": "string",
"description": "Дата и время старта напоминания."
},
"createdAt": {
"type": "string",
"description": "Дата и время создания напоминания."
}
}
}
}
},
"required": [
"status"
]
}
}
Функция удаления напоминания
{
"name": "delete_reminder",
"description": "Удалить напоминания по id. Если пользователь явно не передал id напоминания, то получи метаинформацию о напоминаниях, вызвав сначала соответствующую функцию, и только затем используй функцию удаления напоминания по id.\nЕсли в контексте беседы с пользователем у тебя есть необходимый id, то перед запуском этой функции тебе необходимо переспросить пользователя точно ли он хочет удалить данное напоминание и только после согласия удалять. Если пользователь просит удалить все напоминания и в контексте диалога есть необходимые id или пользователь явно передает id напоминания, которое надо удалить, то вызови эту функцию, переспрашивать пользователя не нужно. В остальных случаях, при наличии необходимых id в контексте диалога и готовности удалить напоминание, сначала переспроси пользователя подтверждает ли он удаление напоминания и вызывай функцию только при наличии подтверждения от пользователя.",
"parameters": {
"type": "object",
"properties": {
"ids": {
"type": "array",
"items": {
"type": "string",
"description": "Идентификатор id напоминания, которое нужно удалить"
},
"description": "Список идентификаторов id напоминаний, которые нужно удалить"
}
},
"required": [
"ids"
]
},
"few_shot_examples": [],
"return_parameters": {
"type": "object",
"description": "Ответ на delete_reminder",
"properties": {
"status": {
"type": "string",
"enum": [
"success",
"fail"
],
"description": "Статус - удалось ли удалить напоминание."
},
"error": {
"type": "string",
"description": "Текст ошибки в случае, если status == fail"
}
},
"required": [
"status"
]
}
}
Функция изменения напоминания
{
"name": "change_reminder",
"description": "Изменить напоминание по id.\nЕсли пользователь просит изменить напоминание, но не указывает какое и какие изменения надо внести, то в ответе попроси предоставить дополнительную информацию.\nЕсли просит изменить напоминание и не указывает какое, но указывает какие изменения внести, то сначала получи метаинформацию о напоминаниях, вызвав нужную функцию, перечисли их в ответе и уточни какое из них изменить.\nЕсли просит изменить напоминание, указывая какое, но не указывая изменения, то сначала получи метаинформацию обо всех напоминаниях, вызвав нужную функцию, перечисли их в ответе и при наличии id, соответствующего запросу, уточни какие изменения надо внести.\nЕсли просит изменить напоминание, указывая какое и какие изменения внести, то получи метаинформацию обо всех напоминаниях, вызвав нужную функцию, и при наличии id, соответствующего запросу пользователя, вызови функцию изменения напоминаня по id.\n\nВызывай данную функцию только при наличии нужного id и информации о том как надо изменить напоминание.",
"parameters": {
"type": "object",
"properties": {
"id": {
"type": "string",
"description": "id напоминания"
},
"title": {
"type": "string",
"description": "Новый текст напоминания"
},
"date_time": {
"type": "string",
"description": "Новые время и дата напоминания на русском языке. Передай только то, что сказал пользователь, не меняя формат."
},
"device_name": {
"type": "string",
"description": "Новое название устройства, на которое следует поставить напоминание"
}
},
"required": [
"id"
]
},
"few_shot_examples": [
{
"request": "Изменить напоминание с id 123 на сегодня в 19 30",
"params": {
"id": "123",
"date_time": "сегодня в 19 30"
}
}
],
"return_parameters": {
"type": "object",
"properties": {
"status": {
"type": "string",
"enum": [
"success",
"fail"
],
"description": "Статус - удалось ли изменить напоминание."
},
"error": {
"type": "string",
"description": "Текст ошибки в случае, если status == fail"
},
"reminder": {
"type": "object",
"description": "Параметры созданного напоминания",
"properties": {
"id": {
"type": "string",
"description": "Идентификатор напоминания."
},
"cron": {
"type": "string",
"description": "Описание периодичности напоминания. Здесь будет передано человекочитаемое описание переодичности напоминания. Если поле отсутствует, то у напоминания нет периодичности (единоразовое)."
},
"title": {
"type": "string",
"description": "Название напоминания, о чем надо напомнить."
},
"devices": {
"type": "array",
"description": "Словарь устройств, к которым привязаны напоминания",
"items": {
"type": "string",
"description": "Название устройства"
}
},
"reminderTime": {
"type": "string",
"description": "Дата и время старта напоминания."
},
"createdAt": {
"type": "string",
"description": "Дата и время создания напоминания."
}
}
}
},
"required": [
"status"
]
}
}

Генерация аргументов

Теперь, когда вы подготовили описание функции, используйте его для генерации аргументов с помощью модели.

Модели GigaChat могут генерировать аргументы для вызова функций в автоматическом режиме.

В этом режиме модель анализирует полученные сообщения (массив messages) и сама решает нужно использовать функции или нет.

Для работы в автоматическом режиме передавайте в запросе поле "function_call": "auto":

{
"model": "GigaChat",
"messages": [
{
"role": "user",
"content": "Погода в Москве на три дня"
}
],
"function_call": "auto",
"functions": [
{
"name": "weather_forecast",
"description": "Возвращает температуру на заданный период",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "Местоположение, например, название города"
},
"format": {
"type": "string",
"enum": [
"celsius",
"fahrenheit"
],
"description": "Единицы измерения температуры"
},
"num_days": {
"type": "integer",
"description": "Период, для которого нужно вернуть прогноз"
}
},
"required": [
"location",
"num_days"
]
}
}
],
}

При этом работа модели зависит от того, содержит массив functions описание пользовательских функций или нет:

  • Если массив отсутствует или пустой — модель сможет обращаться только ко встроенным функциям.
  • Если массив не пустой — модель сможет генерировать аргументы только для заданных функций.

Ответ модели

Когда модель решает, что нужно исполнить пользовательскую функцию, она возвращает ответ с результатом "finish_reason": "function_call". Сгенерированные аргументы для вызова вашей функции передаются в объекте message.function_call:

{
"choices": [
{
"message": {
"role": "assistant",
"content": "",
"functions_state_id": "77d3fb14-457a-46ba-937e-8d856156d003",
"function_call": {
"name": "weather_forecast",
"arguments": {
"location": "Москва",
"format": "celsius"
}
}
},
"index": 0,
"finish_reason": "function_call"
}
],
"created": 1700471392,
"model": "GigaChat",
"usage": {
"prompt_tokens": 150,
"completion_tokens": 35,
"total_tokens": 185
},
"object": "chat.completion"
}

Значение поля "finish_reason": "error", сообщает о том, что ответ модели содержит невалидные аргументы функции.

Передача ответа функции в модель

После исполнения пользовательской функции со сгенерированными аргументами, передайте результат ее работы обратно в модель.

Для этого используйте сообщение с ролью function в контексте диалога (массив messages):

{
"model": "GigaChat",
"messages": [
{
"role": "user",
"content": "Какая погода в Москве сегодня?"
},
{
"role": "assistant",
"content": "",
"functions_state_id": "77d3fb14-457a-46ba-937e-8d856156d003",
"function_call": {
"name": "weather_forecast",
"arguments": {
"location": "Москва",
"format": "celsius"
}
}
},
{
"role": "function",
"content": "{\"temperature\": \"27\"}",
"name": "weather_forecast"
}
],
"functions": [
{
"name": "weather_forecast",
"description": "Возвращает температуру на заданный период",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "Местоположение, например, название города"
},
"format": {
"type": "string",
"enum": [
"celsius",
"fahrenheit"
],
"description": "Единицы измерения температуры"
},
"num_days": {
"type": "integer",
"description": "Период, для которого нужно вернуть прогноз"
}
},
"required": [
"location",
"num_days"
]
}
},
],
}

Подробнее о работе с контекстом диалога — в разделе Работа с историей чата.

Потоковая генерация аргументов

При генерации аргументов в потоковом режиме ("stream": true) название функции (function_call.name) и ее аргументы всегда передаются в одной порции:

data: {"choices":[{"delta":{"content":"Мне нужно посмотреть погоду в Москве","role":"assistant"},"index":0}],"created":1698850241,"model":"GigaChat","object":"chat.completion","usage":{"completion_tokens":50,"prompt_tokens":152,"total_tokens":202}}

data: {"choices":[{"delta":{"content":" на"},"index":0}],"created":1698850241,"model":"GigaChat","object":"chat.completion","usage":{"completion_tokens":1,"prompt_tokens":0,"total_tokens":1}}

data: {"choices":[{"delta":{"content":" завтра"},"index":0}],"created":1698850241,"model":"GigaChat","object":"chat.completion","usage":{"completion_tokens":1,"prompt_tokens":0,"total_tokens":1}}

data: {"choices":[{"delta":{"function_call": {"name": "weather_forecast", "arguments": {"location": "Moscow","num_days": 1}}},"index":0}],"created":1698850241,"model":"GigaChat","object":"chat.completion","usage":{"completion_tokens":1,"prompt_tokens":0,"total_tokens":1}}

data: {"choices":[{"delta":{"content":"","functions_state_id":"77d3fb14-457a-46ba-937e-8d856156d003","created":1718801171,"model":"GigaChat","object":"chat.completion"}

data: [DONE]

Вызов встроенных функций

GigaChat поддерживает встроенные функции, например, для генерации изображений. Встроенные функции вызываются только в автоматическом режиме ("function_call": "auto") на основе запроса пользователя.

При вызове встроенных функций модель возвращает ответ с результатом "finish_reason": "stop".

Пример запроса на генерацию изображения:

curl -L -X POST 'https://gigachat.devices.sberbank.ru/api/v1/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Accept: application/json' \
-H 'Authorization: Bearer <токен_доступа>' \
--data-raw '{
"model": "GigaChat",
"messages": [
{
"role": "system",
"content": "Ты — Василий Кандинский"
},
{
"role": "user",
"content": "Нарисуй розового кота"
}
],
"function_call": "auto",
}'

Пример ответа:

{
"choices": [
{
"message": {
"content": "Запускаю генерацию изображения. Ожидайте результат <img src=\"b28fbd4f-105a-43e0-ba5a-2faa80b1f43c\" fuse=\"true\"/> - вот розовый кот, который у меня получился.",
"role": "assistant",
"functions_state_id": "77d3fb14-457a-46ba-937e-8d856156d003",
"data_for_context": [
{
"content": "Запускаю генерацию изображения. Ожидайте результат",
"role": "assistant",
"function_call": {
"name": "text2image",
"arguments": {
"query": "pink cat, cartoon, colorful, drawing"
}
}
},
{
"content": "{\"status\":\"success\"}",
"role": "function",
"name": "text2image"
},
{
"content": " - вот розовый кот, который у меня получился.",
"role": "assistant"
}
]
},
"index": 0,
"finish_reason": "stop"
}
],
"created": 1716367703,
"model": "GigaChat:3.1.25.3",
"object": "chat.completion",
"usage": {
"prompt_tokens": 372,
"completion_tokens": 48,
"total_tokens": 420
}
}

При этом контекст выполнения функции, который нужен для качественной работы модели, сохраняется одним из двух способов:

  • С помощью поля functions_state_id — идентификатора, который объединяет массив функций, переданных в запросе. При работе в режиме потоковой передачи идентификатор передается в последнем фрагменте.
  • С помощью массива сообщений data_for_context. Это устаревший способ, поддержка которого в будущем прекратится.

Сохранение контекста

C помощью поля functions_state_id

Это приоритетный способ, который в будущем заменит использование массива с данными контекста data_for_context.

Для сохранения контекста после вызова встроенных функций, передавайте поле functions_state_id в запросе в сообщениях с ролью assistant:

{
"messages": [
{
"role": "user",
"content": "нарисуй корову"
},
{
"content": "Добавил в очередь на генерацию изображения... <img src=\"4919dd7a-b97b-4ed9-8db0-5aa68f2bf24b\" fuse=\"true\"/> - вот такая корова у меня получилась.",
"role": "assistant",
"functions_state_id": "77d3fb14-457a-46ba-937e-8d856156d003"
},
{
"content": "а теперь нарисуй слона",
"role": "user"
}
],
"model": "GigaChat"
}

С помощью блока data_for_context

Для сохранения контекста после вызова встроенных функций, передавайте массив data_for_context в запросе в сообщениях с ролью assistant:

{
"messages": [
{
"role": "user",
"content": "Нарисуй розового кота"
},
{
"role": "assistant",
"content": "Запускаю генерацию изображения. Ожидайте результат <img src=\"b28fbd4f-105a-43e0-ba5a-2faa80b1f43c\" fuse=\"true\"/> - вот розовый кот, который у меня получился.",
"data_for_context": [
{
"content": "Запускаю генерацию изображения. Ожидайте результат",
"role": "assistant",
"function_call": {
"name": "text2image",
"arguments": {
"query": "pink cat, cartoon, colorful, drawing"
}
}
},
{
"content": "{\"status\":\"success\"}",
"role": "function",
"name": "text2image"
},
{
"content": " - вот розовый кот, который у меня получился.",
"role": "assistant"
}
]
},
{
"role": "user",
"content": "Дорисуй ему крылья"
}
],
"model": "GigaChat"
}

Потоковая передача токенов

Работа встроенных функций может занимать продолжительное время. Вы можете обрабатывать ответ модели по мере его генерации с помощью потоковой передачи токенов (параметр запроса "stream": true).

Пример запроса:

curl -L -X POST 'https://gigachat.devices.sberbank.ru/api/v1/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Accept: application/json' \
-H 'Authorization: Bearer <токен_доступа>' \
--data-raw '{
"model": "GigaChat-Pro",
"messages": [
{
"role": "system",
"content": "Ты — Василий Кандинский"
},
{
"role": "user",
"content": "Нарисуй розового кота"
}
],
"function_call": "auto",
"stream": true,
}'

При этом сообщения о том, что работает встроенная функция, будут приходить с ролью function_in_progress и данными о том, когда был создан фрагмент сообщения, сколько времени осталось до завершения работы встроенной функции и о том, какая функция запущена.

Пример ответа:

data: {"choices":[{"delta":{"content":"осталось 00:11","role":"function_in_progress","name":"text2image"},"index":0}],"created":1733401362,"model":"GigaChat-Max:1.0.26.20","object":"chat.completion"}

data: {"choices":[{"delta":{"content":"осталось 00:06","role":"function_in_progress","name":"text2image"},"index":0}],"created":1733401367,"model":"GigaChat-Max:1.0.26.20","object":"chat.completion"}

data: {"choices":[{"delta":{"content":"осталось 00:03","role":"function_in_progress","name":"text2image"},"index":0}],"created":1733401370,"model":"GigaChat-Max:1.0.26.20","object":"chat.completion"}

data: {"choices":[{"delta":{"content":"осталось 00:01","role":"function_in_progress","name":"text2image"},"index":0}],"created":1733401372,"model":"GigaChat-Max:1.0.26.20","object":"chat.completion"}

data: {"choices":[{"delta":{"content":"осталось 00:01","role":"function_in_progress","name":"text2image"},"index":0}],"created":1733401373,"model":"GigaChat-Max:1.0.26.20","object":"chat.completion"}

data: {"choices":[{"delta":{"content":"<img src=\"6fb0b045-e4c8-43b6-bd4d-06eb6cf267eb\" fuse=\"true\"/> вот иллюстрация Красной Шапочки.","role":"assistant"},"index":0}],"created":1733401374,"model":"GigaChat-Max:1.0.26.20","object":"chat.completion"}

data: {"choices":[{"delta":{"content":"","functions_state_id":"1a7f916c-053b-4649-9c7d-0ce0f4a0f515"},"index":0,"finish_reason":"stop"}],"created":1733401374,"model":"GigaChat-Max:1.0.26.20","object":"chat.completion","usage":{"prompt_tokens":24,"completion_tokens":48,"total_tokens":72,"precached_prompt_tokens":0}}

data: [DONE]

Смотрите также

ПАО Сбербанк использует cookie для персонализации сервисов и удобства пользователей.
Вы можете запретить сохранение cookie в настройках своего браузера.