ym88659208ym87991671
Quickstart | Документация для разработчиков

Quickstart

Обновлено 1 апреля 2024

Language models output text. But many times you may want to get more structured information than just text back. This is where output parsers come in.

Output parsers are classes that help structure language model responses. There are two main methods an output parser must implement:

  • "Get format instructions": A method which returns a string containing instructions for how the output of a language model should be formatted.
  • "Parse": A method which takes in a string (assumed to be the response from a language model) and parses it into some structure.

And then one optional one:

  • "Parse with prompt": A method which takes in a string (assumed to be the response from a language model) and a prompt (assumed to be the prompt that generated such a response) and parses it into some structure. The prompt is largely provided in the event the OutputParser wants to retry or fix the output in some way, and needs information from the prompt to do so.

Get started

Below we go over the main type of output parser, the PydanticOutputParser.

from langchain.output_parsers import PydanticOutputParser
from langchain.prompts import PromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field, validator
from langchain_openai import OpenAI

model = OpenAI(model_name="gpt-3.5-turbo-instruct", temperature=0.0)


# Define your desired data structure.
class Joke(BaseModel):
setup: str = Field(description="question to set up a joke")
punchline: str = Field(description="answer to resolve the joke")

# You can add custom validation logic easily with Pydantic.
@validator("setup")
def question_ends_with_question_mark(cls, field):
if field[-1] != "?":
raise ValueError("Badly formed question!")
return field


# Set up a parser + inject instructions into the prompt template.
parser = PydanticOutputParser(pydantic_object=Joke)

prompt = PromptTemplate(
template="Answer the user query.\n{format_instructions}\n{query}\n",
input_variables=["query"],
partial_variables={"format_instructions": parser.get_format_instructions()},
)

# And a query intended to prompt a language model to populate the data structure.
prompt_and_model = prompt | model
output = prompt_and_model.invoke({"query": "Tell me a joke."})
parser.invoke(output)
    Joke(setup='Why did the chicken cross the road?', punchline='To get to the other side!')

LCEL

Output parsers implement the Runnable interface, the basic building block of the LangChain Expression Language (LCEL). This means they support invoke, ainvoke, stream, astream, batch, abatch, astream_log calls.

Output parsers accept a string or BaseMessage as input and can return an arbitrary type.

parser.invoke(output)
    Joke(setup='Why did the chicken cross the road?', punchline='To get to the other side!')

Instead of manually invoking the parser, we also could've just added it to our Runnable sequence:

chain = prompt | model | parser
chain.invoke({"query": "Tell me a joke."})
    Joke(setup='Why did the chicken cross the road?', punchline='To get to the other side!')

While all parsers support the streaming interface, only certain parsers can stream through partially parsed objects, since this is highly dependent on the output type. Parsers which cannot construct partial objects will simply yield the fully parsed output.

The SimpleJsonOutputParser for example can stream through partial outputs:

from langchain.output_parsers.json import SimpleJsonOutputParser

json_prompt = PromptTemplate.from_template(
"Return a JSON object with an `answer` key that answers the following question: {question}"
)
json_parser = SimpleJsonOutputParser()
json_chain = json_prompt | model | json_parser
list(json_chain.stream({"question": "Who invented the microscope?"}))
    [{},
{'answer': ''},
{'answer': 'Ant'},
{'answer': 'Anton'},
{'answer': 'Antonie'},
{'answer': 'Antonie van'},
{'answer': 'Antonie van Lee'},
{'answer': 'Antonie van Leeu'},
{'answer': 'Antonie van Leeuwen'},
{'answer': 'Antonie van Leeuwenho'},
{'answer': 'Antonie van Leeuwenhoek'}]

While the PydanticOutputParser cannot:

list(chain.stream({"query": "Tell me a joke."}))
    [Joke(setup='Why did the chicken cross the road?', punchline='To get to the other side!')]
ПАО Сбербанк использует cookie для персонализации сервисов и удобства пользователей.
Вы можете запретить сохранение cookie в настройках своего браузера.