Manipulating inputs & output
RunnableParallel can be useful for manipulating the output of one Runnable to match the input format of the next Runnable in a sequence.
Here the input to prompt is expected to be a map with keys "context" and "question". The user input is just the question. So we need to get the context using our retriever and passthrough the user input under the "question" key.
%pip install --upgrade --quiet langchain langchain-openai
from langchain_community.vectorstores import FAISS
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
vectorstore = FAISS.from_texts(
["harrison worked at kensho"], embedding=OpenAIEmbeddings()
)
retriever = vectorstore.as_retriever()
template = """Answer the question based only on the following context:
{context}
Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)
model = ChatOpenAI()
retrieval_chain = (
{"context": retriever, "question": RunnablePassthrough()}
| prompt
| model
| StrOutputParser()
)
retrieval_chain.invoke("where did harrison work?")
'Harrison worked at Kensho.'
::: {.callout-tip} Note that when composing a RunnableParallel with another Runnable we don't even need to wrap our dictionary in the RunnableParallel class — the type conversion is handled for us. In the context of a chain, these are equivalent: :::
{"context": retriever, "question": RunnablePassthrough()}
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
RunnableParallel(context=retriever, question=RunnablePassthrough())
Using itemgetter as shorthand
Note that you can use Python's itemgetter
as shorthand to extract data from the map when combining with RunnableParallel
. You can find more information about itemgetter in the Python Documentation.
In the example below, we use itemgetter to extract specific keys from the map:
from operator import itemgetter
from langchain_community.vectorstores import FAISS
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
vectorstore = FAISS.from_texts(
["harrison worked at kensho"], embedding=OpenAIEmbeddings()
)
retriever = vectorstore.as_retriever()
template = """Answer the question based only on the following context:
{context}
Question: {question}
Answer in the following language: {language}
"""
prompt = ChatPromptTemplate.from_template(template)
chain = (
{
"context": itemgetter("question") | retriever,
"question": itemgetter("question"),
"language": itemgetter("language"),
}
| prompt
| model
| StrOutputParser()
)
chain.invoke({"question": "where did harrison work", "language": "italian"})
'Harrison ha lavorato a Kensho.'
Parallelize steps
RunnableParallel (aka. RunnableMap) makes it easy to execute multiple Runnables in parallel, and to return the output of these Runnables as a map.
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnableParallel
from langchain_openai import ChatOpenAI
model = ChatOpenAI()
joke_chain = ChatPromptTemplate.from_template("tell me a joke about {topic}") | model
poem_chain = (
ChatPromptTemplate.from_template("write a 2-line poem about {topic}") | model
)
map_chain = RunnableParallel(joke=joke_chain, poem=poem_chain)
map_chain.invoke({"topic": "bear"})
{'joke': AIMessage(content="Why don't bears wear shoes?\n\nBecause they have bear feet!"),
'poem': AIMessage(content="In the wild's embrace, bear roams free,\nStrength and grace, a majestic decree.")}
Parallelism
RunnableParallel are also useful for running independent processes in parallel, since each Runnable in the map is executed in parallel. For example, we can see our earlier joke_chain
, poem_chain
and map_chain
all have about the same runtime, even though map_chain
executes both of the other two.
%%timeit
joke_chain.invoke({"topic": "bear"})
958 ms ± 402 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%%timeit
poem_chain.invoke({"topic": "bear"})
1.22 s ± 508 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%%timeit
map_chain.invoke({"topic": "bear"})
1.15 s ± 119 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)