ym88659208ym87991671
Split by tokens | Документация для разработчиков

Split by tokens

Обновлено 26 августа 2024

Language models have a token limit. You should not exceed the token limit. When you split your text into chunks it is therefore a good idea to count the number of tokens. There are many tokenizers. When you count tokens in your text you should use the same tokenizer as used in the language model.

tiktoken

tiktoken is a fast BPE tokenizer created by OpenAI.

We can use it to estimate tokens used. It will probably be more accurate for the OpenAI models.

  1. How the text is split: by character passed in
  2. How the chunk size is measured: by tiktoken tokenizer
%pip install --upgrade --quiet  tiktoken
# This is a long document we can split up.
with open("../../state_of_the_union.txt") as f:
state_of_the_union = f.read()
from langchain.text_splitter import CharacterTextSplitter
text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
chunk_size=100, chunk_overlap=0
)
texts = text_splitter.split_text(state_of_the_union)
print(texts[0])

We can also load a tiktoken splitter directly

from langchain.text_splitter import TokenTextSplitter

text_splitter = TokenTextSplitter(chunk_size=10, chunk_overlap=0)

texts = text_splitter.split_text(state_of_the_union)
print(texts[0])

spaCy

spaCy is an open-source software library for advanced natural language processing, written in the programming languages Python and Cython.

Another alternative to NLTK is to use spaCy tokenizer.

  1. How the text is split: by spaCy tokenizer
  2. How the chunk size is measured: by number of characters
%pip install --upgrade --quiet  spacy
# This is a long document we can split up.
with open("../../state_of_the_union.txt") as f:
state_of_the_union = f.read()
from langchain.text_splitter import SpacyTextSplitter

text_splitter = SpacyTextSplitter(chunk_size=1000)
texts = text_splitter.split_text(state_of_the_union)
print(texts[0])

SentenceTransformers

The SentenceTransformersTokenTextSplitter is a specialized text splitter for use with the sentence-transformer models. The default behaviour is to split the text into chunks that fit the token window of the sentence transformer model that you would like to use.

from langchain.text_splitter import SentenceTransformersTokenTextSplitter
splitter = SentenceTransformersTokenTextSplitter(chunk_overlap=0)
text = "Lorem "
count_start_and_stop_tokens = 2
text_token_count = splitter.count_tokens(text=text) - count_start_and_stop_tokens
print(text_token_count)
    2
token_multiplier = splitter.maximum_tokens_per_chunk // text_token_count + 1

# `text_to_split` does not fit in a single chunk
text_to_split = text * token_multiplier

print(f"tokens in text to split: {splitter.count_tokens(text=text_to_split)}")
    tokens in text to split: 514
text_chunks = splitter.split_text(text=text_to_split)

print(text_chunks[1])
    lorem

NLTK

The Natural Language Toolkit, or more commonly NLTK, is a suite of libraries and programs for symbolic and statistical natural language processing (NLP) for English written in the Python programming language.

Rather than just splitting on "\n\n", we can use NLTK to split based on NLTK tokenizers.

  1. How the text is split: by NLTK tokenizer.
  2. How the chunk size is measured:by number of characters
# pip install nltk
# This is a long document we can split up.
with open("../../state_of_the_union.txt") as f:
state_of_the_union = f.read()
from langchain.text_splitter import NLTKTextSplitter

text_splitter = NLTKTextSplitter(chunk_size=1000)
texts = text_splitter.split_text(state_of_the_union)
print(texts[0])

KoNLPY

KoNLPy: Korean NLP in Python is is a Python package for natural language processing (NLP) of the Korean language.

Token splitting involves the segmentation of text into smaller, more manageable units called tokens. These tokens are often words, phrases, symbols, or other meaningful elements crucial for further processing and analysis. In languages like English, token splitting typically involves separating words by spaces and punctuation marks. The effectiveness of token splitting largely depends on the tokenizer's understanding of the language structure, ensuring the generation of meaningful tokens. Since tokenizers designed for the English language are not equipped to understand the unique semantic structures of other languages, such as Korean, they cannot be effectively used for Korean language processing.

Token splitting for Korean with KoNLPy's Kkma Analyzer

In case of Korean text, KoNLPY includes at morphological analyzer called Kkma (Korean Knowledge Morpheme Analyzer). Kkma provides detailed morphological analysis of Korean text. It breaks down sentences into words and words into their respective morphemes, identifying parts of speech for each token. It can segment a block of text into individual sentences, which is particularly useful for processing long texts.

Usage Considerations

While Kkma is renowned for its detailed analysis, it is important to note that this precision may impact processing speed. Thus, Kkma is best suited for applications where analytical depth is prioritized over rapid text processing.

# pip install konlpy
# This is a long Korean document that we want to split up into its component sentences.
with open("./your_korean_doc.txt") as f:
korean_document = f.read()
from langchain.text_splitter import KonlpyTextSplitter

text_splitter = KonlpyTextSplitter()
texts = text_splitter.split_text(korean_document)
# The sentences are split with "\n\n" characters.
print(texts[0])
    춘향전 옛날에 남원에 이 도령이라는 벼슬아치 아들이 있었다.

그의 외모는 빛나는 달처럼 잘생겼고, 그의 학식과 기예는 남보다 뛰어났다.

한편, 이 마을에는 춘향이라는 절세 가인이 살고 있었다.

춘 향의 아름다움은 꽃과 같아 마을 사람들 로부터 많은 사랑을 받았다.

어느 봄날, 도령은 친구들과 놀러 나갔다가 춘 향을 만 나 첫 눈에 반하고 말았다.

두 사람은 서로 사랑하게 되었고, 이내 비밀스러운 사랑의 맹세를 나누었다.

하지만 좋은 날들은 오래가지 않았다.

도령의 아버지가 다른 곳으로 전근을 가게 되어 도령도 떠나 야만 했다.

이별의 아픔 속에서도, 두 사람은 재회를 기약하며 서로를 믿고 기다리기로 했다.

그러나 새로 부임한 관아의 사또가 춘 향의 아름다움에 욕심을 내 어 그녀에게 강요를 시작했다.

춘 향 은 도령에 대한 자신의 사랑을 지키기 위해, 사또의 요구를 단호히 거절했다.

이에 분노한 사또는 춘 향을 감옥에 가두고 혹독한 형벌을 내렸다.

이야기는 이 도령이 고위 관직에 오른 후, 춘 향을 구해 내는 것으로 끝난다.

두 사람은 오랜 시련 끝에 다시 만나게 되고, 그들의 사랑은 온 세상에 전해 지며 후세에까지 이어진다.

- 춘향전 (The Tale of Chunhyang)

Hugging Face tokenizer

Hugging Face has many tokenizers.

We use Hugging Face tokenizer, the GPT2TokenizerFast to count the text length in tokens.

  1. How the text is split: by character passed in
  2. How the chunk size is measured: by number of tokens calculated by the Hugging Face tokenizer
from transformers import GPT2TokenizerFast

tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
# This is a long document we can split up.
with open("../../../state_of_the_union.txt") as f:
state_of_the_union = f.read()
from langchain.text_splitter import CharacterTextSplitter
text_splitter = CharacterTextSplitter.from_huggingface_tokenizer(
tokenizer, chunk_size=100, chunk_overlap=0
)
texts = text_splitter.split_text(state_of_the_union)
print(texts[0])
ПАО Сбербанк использует cookie для персонализации сервисов и удобства пользователей.
Вы можете запретить сохранение cookie в настройках своего браузера.