ym88659208ym87991671
CacheBackedEmbeddings | Документация для разработчиков

CacheBackedEmbeddings

Обновлено 24 мая 2024

Embeddings can be stored or temporarily cached to avoid needing to recompute them.

Caching embeddings can be done using a CacheBackedEmbeddings.

The cache backed embedder is a wrapper around an embedder that caches embeddings in a key-value store.

The text is hashed and the hash is used as the key in the cache.

The main supported way to initialized a CacheBackedEmbeddings is from_bytes_store. This takes in the following parameters:

  • underlying_embedder: The embedder to use for embedding.
  • document_embedding_cache: Any ByteStore for caching document embeddings.
  • namespace: (optional, defaults to "") The namespace to use for document cache. This namespace is used to avoid collisions with other caches. For example, set it to the name of the embedding model used.

Attention: Be sure to set the namespace parameter to avoid collisions of the same text embedded using different embeddings models.

from langchain.embeddings import CacheBackedEmbeddings

Using with a Vector Store

First, let's see an example that uses the local file system for storing embeddings and uses FAISS vectorstore for retrieval.

%pip install --upgrade --quiet  langchain-openai faiss-cpu
from langchain.storage import LocalFileStore
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings

underlying_embeddings = OpenAIEmbeddings()

store = LocalFileStore("./cache/")

cached_embedder = CacheBackedEmbeddings.from_bytes_store(
underlying_embeddings, store, namespace=underlying_embeddings.model
)

The cache is empty prior to embedding

list(store.yield_keys())
    []

Load the document, split it into chunks, embed each chunk and load it into the vector store.

raw_documents = TextLoader("../../state_of_the_union.txt").load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
documents = text_splitter.split_documents(raw_documents)

create the vectorstore

%%time
db = FAISS.from_documents(documents, cached_embedder)
    CPU times: user 218 ms, sys: 29.7 ms, total: 248 ms
Wall time: 1.02 s

If we try to create the vectostore again, it'll be much faster since it does not need to re-compute any embeddings.

%%time
db2 = FAISS.from_documents(documents, cached_embedder)
    CPU times: user 15.7 ms, sys: 2.22 ms, total: 18 ms
Wall time: 17.2 ms

And here are some of the embeddings that got created:

list(store.yield_keys())[:5]
    ['text-embedding-ada-00217a6727d-8916-54eb-b196-ec9c9d6ca472',
'text-embedding-ada-0025fc0d904-bd80-52da-95c9-441015bfb438',
'text-embedding-ada-002e4ad20ef-dfaa-5916-9459-f90c6d8e8159',
'text-embedding-ada-002ed199159-c1cd-5597-9757-f80498e8f17b',
'text-embedding-ada-0021297d37a-2bc1-5e19-bf13-6c950f075062']

Swapping the ByteStore

Обновлено 24 мая 2024

In order to use a different ByteStore, just use it when creating your CacheBackedEmbeddings. Below, we create an equivalent cached embeddings object, except using the non-persistent InMemoryByteStore instead:

from langchain.embeddings import CacheBackedEmbeddings
from langchain.storage import InMemoryByteStore

store = InMemoryByteStore()

cached_embedder = CacheBackedEmbeddings.from_bytes_store(
underlying_embeddings, store, namespace=underlying_embeddings.model
)
ПАО Сбербанк использует cookie для персонализации сервисов и удобства пользователей.
Вы можете запретить сохранение cookie в настройках своего браузера.