Structured output parser | Документация для разработчиков

Structured output parser

Обновлено 24 мая 2024

This output parser can be used when you want to return multiple fields. While the Pydantic/JSON parser is more powerful, this is useful for less powerful models.

from langchain.output_parsers import ResponseSchema, StructuredOutputParser
from langchain.prompts import PromptTemplate
from langchain_openai import ChatOpenAI
response_schemas = [
ResponseSchema(name="answer", description="answer to the user's question"),
description="source used to answer the user's question, should be a website.",
output_parser = StructuredOutputParser.from_response_schemas(response_schemas)

We now get a string that contains instructions for how the response should be formatted, and we then insert that into our prompt.

format_instructions = output_parser.get_format_instructions()
prompt = PromptTemplate(
template="answer the users question as best as possible.\n{format_instructions}\n{question}",
partial_variables={"format_instructions": format_instructions},
model = ChatOpenAI(temperature=0)
chain = prompt | model | output_parser
chain.invoke({"question": "what's the capital of france?"})
    {'answer': 'The capital of France is Paris.',
'source': 'https://en.wikipedia.org/wiki/Paris'}
for s in chain.stream({"question": "what's the capital of france?"}):
    {'answer': 'The capital of France is Paris.', 'source': 'https://en.wikipedia.org/wiki/Paris'}
ПАО Сбербанк использует cookie для персонализации сервисов и удобства пользователей.
Вы можете запретить сохранение cookie в настройках своего браузера.